
Mad Game Development

Rob Miles

Department of Computer Science

Introduction

• XNA Overview

• Creating a projectile

– Texture and position
– Aiming and firing
– Updating during movement
– Detecting collisions

• Panning the screen

– Using a Transformation Matrix
– Panning when aiming
– Following the ball

• Game State

Projectile

• The ball is a texture and a rectangle

• We give the ball a position using floating point values

– These are converted to integers to position the draw
rectangle

• Velocity is the change in position each time the ball is
updated

• Acceleration is the change in velocity each time the ball is
updated

Ball Data

• This is the information stored about the ball

• The texture gives the ball appearance

• The rectangle gives the ball position

Texture2D ballTexture;
Rectangle ballRectangle;
float ballX, ballY;
float ballXSpeed, ballYSpeed;
float ballXMaxSpeed, ballYMaxSpeed;
float ballXAccel, ballYAccel;

Ball Update

• This is the code that does the physics for the ball movement

• The acceleration acts on the ball once it has been fired

• This code lives in the Update method which is called 60
times a second by XNA to update game objects

// Update the X and Y position of the ball based on its
// present speed
ballX += ballXSpeed;
ballY += ballYSpeed;

// Apply acceleration to the ball speed
ballXSpeed += ballXAccel;
ballYSpeed += ballYAccel;

Ball Position

• This is the code that positions the ball rectangle based on the
floating point values we calculate

• We need to do this because the rectangle is used to draw the
ball, and that is positioned using integers

• However, we need to do floating point calculations when
using the speed and acceleration

// Position the draw rectangle to the nearest integer
ballRectangle.X = (int)(ballX + 0.5f);
ballRectangle.Y = (int)(ballY + 0.5f);

Ball Drawing

• This draws the ball on the screen

• We have a similar draw operation for the other items in the
game

• Drawing is performed in the Draw method which is called
automatically by XNA

• This must appear in the middle of a spriteBatch.Begin()
– spriteBatch.End() sequence

spriteBatch.Draw(ballTexture, ballRectangle, Color.White);

Ball Launching

• This sets the initial speed of the ball when fire is pressed

• We use the left thumbstick to set the speed values

// Press A to fire the ball
if (gamePad.Buttons.A == ButtonState.Pressed)
{
 // Set the speed of the ball from the left thumbstick
 // position
 ballXSpeed = gamePad.ThumbSticks.Left.X *
 ballXMaxSpeed;
 ballYSpeed = -gamePad.ThumbSticks.Left.Y *
 ballYMaxSpeed;
 aimingShot = false;
}

The Target

• The target is another sprite

• It just has a texture and a position rectangle

/// <summary>
/// Texture of the single target
/// </summary>
Texture2D targetTexture;
/// <summary>
/// Used to draw the target and detect collisions
/// </summary>
Rectangle targetRectangle;

Detecting Collisions

• We can detect collisions by using rectangle intersection

• This code tests to see if the ball has hit the target

• If it has it plays an explosion sound and resets the ball

// If we have hit a target play a sound and reset the ball
if (ballRectangle.Intersects(targetRectangle))
{
 bangSound.Play();
 resetBall();
}

Scrolling Background

• The background is another texture and rectangle

• But this rectangle is much bigger than the display

• We want to be able to scroll the display around and view
different parts of the playfield

• We can do this by using a transformation matrix on the
SpriteBatch draw

Texture2D backTexture;
Rectangle backRectangle;
float backScrollSpeed;

Transformation Matrix

• A transformation matrix is a lump of maths that can be
applied to a drawing operation to change the way it looks

– Scaling
– Rotation
– Translation

• We just want to translate our view when we draw it

• XNA will create a translation matrix for us

Matrix transformation;

 transformation = Matrix.CreateTranslation(xOffset, 0, 0);

Drawing with a Transformation Matrix

• We can ask SpriteBatch to use this matrix to transform the
drawing operation

• All the drawing performed will be moved according to the
matrix supplied

• We can follow this with an “untransformed” draw if we wish

spriteBatch.Begin(SpriteBlendMode.AlphaBlend,
 SpriteSortMode.Immediate,
 SaveStateMode.None, transformation);

// transformed drawing

spriteBatch.End();

Panning the Screen with the ball

• We set the offset to pan the screen when the ball reaches the
right hand edge

• This is the offset value used to create the translation matrix

// Check if the ball has reached the right hand edge
if (ballRectangle.Right + scrollMargin > width)
{
 // need to scroll the screen
 xOffset = width - (ballRectangle.Right + scrollMargin) ;
}

Panning the Screen when aiming

• When aiming we use the X value of the right thumbstic to
change the xOffset value

• This lets the user pan left and right

• This version of the code does not stop the user panning right
off the background image

xOffset = xOffset - gamePad.ThumbSticks.Right.X *
 backScrollSpeed;

Game State

• I’m using a simple boolean to control the game state

• You might want to add other game states as well

if (aimingShot)
{
 // Aiming the shot
}
else
{
 // firing the shot
}

Stuff you Need to Do

• Add some more assets

– Targets to avoid
– Targets to hit

• Sort out the edges

– Stop the player from panning off the screen

• Add more game states

• Have fun

Sample Code

• All the code you have seen

Questions?

www.destructiongolf.com

